Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.549
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 812-820, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545979

RESUMO

Taq DNA polymerase, which was discovered from a thermophilic aquatic bacterium (Thermus aquaticus), is an enzyme that possesses both reverse transcriptase activity and DNA polymerase activity. Colicin E (CE) protein belongs to a class of Escherichia coli toxins that utilize the vitamin receptor BtuB as a transmembrane receptor. Among these toxins, CE2, CE7, CE8, and CE9 are classified as non-specific DNase-type colicins. Taq DNA polymerase consists of a 5'→3' exonuclease domain, a 3'→5' exonuclease domain, and a polymerase domain. Taq DNA polymerase lacking the 5'→3' exonuclease domain (ΔTaq) exhibits higher yield but lower processivity, making it unable to amplify long fragments. In this study, we aimed to enhance the processivity of ΔTaq. To this end, we fused dCE with ΔTaq and observed a significant improvement in the processivity of the resulting dCE-ΔTaq compared to Taq DNA polymerase and dCE-Taq. Furthermore, its reverse transcriptase activity was also higher than that of ΔTaq. The most notable improvement was observed in dCE8-ΔTaq, which not only successfully amplified 8 kb DNA fragments within 1 minute, but also yielded higher results compared to other mutants. In summary, this study successfully enhanced the PCR efficiency and reverse transcription activity of Taq DNA polymerase by fusing ΔTaq DNA polymerase with dCE. This approach provides a novel approach for modifying Taq DNA polymerase and holds potential for the development of improved variants of Taq DNA polymerase.


Assuntos
Colicinas , Taq Polimerase/genética , Taq Polimerase/química , Taq Polimerase/metabolismo , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/metabolismo , DNA , Exonucleases , DNA Polimerase Dirigida por RNA/metabolismo , Thermus/genética , Thermus/metabolismo
2.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376387

RESUMO

The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.


Assuntos
Colicinas , Shigella sonnei , Animais , Shigella sonnei/genética , Escherichia coli/genética , Bactérias , Conteúdo Gastrointestinal , Mamíferos
3.
Gut Microbes ; 16(1): 2295891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38149626

RESUMO

Diarrheal diseases are still a significant problem for humankind, causing approximately half a million deaths annually. To cause diarrhea, enteric bacterial pathogens must first colonize the gut, which is a niche occupied by the normal bacterial microbiota. Therefore, the ability of pathogenic bacteria to inhibit the growth of other bacteria can facilitate the colonization process. Although enterotoxigenic Escherichia coli (ETEC) is one of the major causative agents of diarrheal diseases, little is known about the competition systems found in and used by ETEC and how they contribute to the ability of ETEC to colonize a host. Here, we collected a set of 94 fully assembled ETEC genomes by performing whole-genome sequencing and mining the NCBI RefSeq database. Using this set, we performed a comprehensive search for delivered bacterial toxins and investigated how these toxins contribute to ETEC competitiveness in vitro. We found that type VI secretion systems (T6SS) were widespread among ETEC (n = 47). In addition, several closely related ETEC strains were found to encode Colicin Ia and T6SS (n = 8). These toxins provide ETEC competitive advantages during in vitro competition against other E. coli, suggesting that the role of T6SS as well as colicins in ETEC biology has until now been underappreciated.


Assuntos
Colicinas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Humanos , Infecções por Escherichia coli/microbiologia , Escherichia coli Enterotoxigênica/genética , Colicinas/genética , Diarreia/microbiologia , Bactérias , Proteínas de Escherichia coli/genética
4.
EBioMedicine ; 97: 104822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806286

RESUMO

BACKGROUND: Shigella sp. are enteric pathogens which causes >125 million cases of shigellosis annually. S. sonnei accounts for about a quarter of those cases and is increasingly prevalent in industrialising nations. Being an enteric pathogen, S. sonnei benefits from outcompeting gut commensals such as Escherichia coli to establish itself and cause disease. There are numerous mechanisms that bacterial pathogens use to outcompete its rivals including molecules called colicins. A Type 6 Secretion System (T6SS) was recently described as contributing to E. coli killing in S. sonnei. METHODS: We used Bulk Phenotyping of Epidemiological Replicates (BPER) which combined bacterial Genome Wide Association Studies (bGWAS) and high throughput phenotyping on a collection of S. sonnei surveillance isolates to identify the genetic features associated with E. coli killing and explore their relationship with epidemiological behaviour. We further explored the presence of colicins and T6SS components in the isolates using genomics, laboratory experimentation, and proteomics. FINDINGS: Our bGWAS analysis returned known and novel colicin and colicin related genes as significantly associated with E. coli killing. In silico analyses identified key colicin clusters responsible for the killing phenotype associated with epidemiologically successful sub-lineages. The killing phenotype was not associated with the presence of a T6SS. Laboratory analyses confirmed the presence of the key colicin clusters and that killing was contact-independent. INTERPRETATION: Colicins are responsible for E. coli killing by S. sonnei, not a T6SS. This phenotype contributes to shaping the observed epidemiology of S. sonnei and may contribute to its increasing prevalence globally. BPER is an epidemiologically relevant approach to phenotypic testing that enables the rapid identification of genetic drivers of phenotypic changes, and assessment of their relevance to epidemiology in natural settings. FUNDING: Biotechnology and Biological Sciences Research Council, Biotechnology and Biological Sciences Research Council Doctoral Training Partnership studentship, Wellcome Trust, Medical Research Council (UK), French National Research Agency.


Assuntos
Colicinas , Shigella , Humanos , Colicinas/genética , Escherichia coli/genética , Shigella sonnei/genética , Estudo de Associação Genômica Ampla
5.
Nat Commun ; 14(1): 4337, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474516

RESUMO

Bacteriophages operate via pathogen-specific mechanisms of action distinct from conventional, broad-spectrum antibiotics and are emerging as promising alternative antimicrobials. However, phage-mediated killing is often limited by bacterial resistance development. Here, we engineer phages for target-specific effector gene delivery and host-dependent production of colicin-like bacteriocins and cell wall hydrolases. Using urinary tract infection (UTI) as a model, we show how heterologous effector phage therapeutics (HEPTs) suppress resistance and improve uropathogen killing by dual phage- and effector-mediated targeting. Moreover, we designed HEPTs to control polymicrobial uropathogen communities through production of effectors with cross-genus activity. Using phage-based companion diagnostics, we identified potential HEPT responder patients and treated their urine ex vivo. Compared to wildtype phage, a colicin E7-producing HEPT demonstrated superior control of patient E. coli bacteriuria. Arming phages with heterologous effectors paves the way for successful UTI treatment and represents a versatile tool to enhance and adapt phage-based precision antimicrobials.


Assuntos
Infecções Bacterianas , Bacteriófagos , Colicinas , Humanos , Bacteriófagos/genética , Escherichia coli , Antibacterianos/farmacologia
6.
Elife ; 122023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266569

RESUMO

Transfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host genera, but their exact function has remained unclear for more than 50 years. Several hypotheses have been proposed, and the most widely accepted one is codon compensation, which suggests that phages encode tRNAs that supplement codons that are less frequently used by the host. Here, we combine several observations and propose a new hypothesis that phage-encoded tRNAs counteract the tRNA-depleting strategies of the host using enzymes such as VapC, PrrC, Colicin D, and Colicin E5 to defend from viral infection. Based on mutational patterns of anticodon loops of tRNAs encoded by phages, we predict that these tRNAs are insensitive to host tRNAses. For phage-encoded tRNAs targeted in the anticodon itself, we observe that phages typically avoid encoding these tRNAs, further supporting the hypothesis that phage tRNAs are selected to be insensitive to host anticodon nucleases. Altogether, our results support the hypothesis that phage-encoded tRNAs have evolved to be insensitive to host anticodon nucleases.


Assuntos
Bacteriófagos , Colicinas , Anticódon/genética , Bacteriófagos/genética , Colicinas/genética , RNA de Transferência/genética , Mutação , Códon
7.
Plant Physiol ; 193(1): 259-270, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37307565

RESUMO

The downy mildew oomycete Hyaloperonospora arabidopsidis, an obligate filamentous pathogen, infects Arabidopsis (Arabidopsis thaliana) by forming structures called haustoria inside host cells. Previous transcriptome analyses have revealed that host genes are specifically induced during infection; however, RNA profiling from whole-infected tissues may fail to capture key transcriptional events occurring exclusively in haustoriated host cells, where the pathogen injects virulence effectors to modulate host immunity. To determine interactions between Arabidopsis and H. arabidopsidis at the cellular level, we devised a translating ribosome affinity purification system using 2 high-affinity binding proteins, colicin E9 and Im9 (immunity protein of colicin E9), applicable to pathogen-responsive promoters, thus enabling haustoriated cell-specific RNA profiling. Among the host genes specifically expressed in H. arabidopsidis-haustoriated cells, we found genes that promote either susceptibility or resistance to the pathogen, providing insights into the Arabidopsis-downy mildew interaction. We propose that our protocol for profiling cell-specific transcripts will apply to several stimulus-specific contexts and other plant-pathogen interactions.


Assuntos
Arabidopsis , Colicinas , Oomicetos , Peronospora , Arabidopsis/genética , RNA/metabolismo , Colicinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética
8.
Microbiol Spectr ; 11(3): e0017323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036359

RESUMO

While diverse antibacterials are available in nature, each possesses their own strengths and limitations. One such antibacterial is colicins, proteinaceous toxins that are produced by strains of E. coli to subvert the growth or viability of other E. coli strains. Similarly, predatory bacteria, of which Bdellovibrio bacteriovorus is well-known, are microbes that actively predate on and consume other Gram-negative bacterial strains. While they are all quite active as antibacterials, they also present some limitations: rapid resistance development to colicins while predation does not completely kill their prey. Within this study, therefore, we evaluated the impact of two different colicins (colicin B [ColB] and colicin E5 [ColE5]) and B. bacteriovorus HD100 either individually or together against four clinical isolates of E. coli that are resistant to either colistin or carbapenem. While the ColB and ColE5 were quickly active when used alone, causing a significant loss in viability (>3-log) in susceptible populations after only 3 h, the pathogens always grew afterwards and had final cell densities that were similar with their respective controls. Predation with B. bacteriovorus HD100, in contrast, was most pronounced after 24 h (>3-log reduction in each pathogen viability but never complete). When combined, better killing efficiencies were observed with several of the pathogens, with complete eradication realized for two (<100 viable pathogens per mL). Given the diversity of colicins in nature and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggest there is a massive potential to control pathogens when they are used together. IMPORTANCE The coupled impact of drug resistance with reduced antibiotic development has placed humankind at a postantibiotic crossroads where antibiotic alternatives are desperately needed. Consequently, we discuss here the combined effectiveness of two vastly different classes of antibacterials, namely, colicins and a predatory bacterium (i.e.,Bdellovibrio bacteriovorus HD100), against two priority pathogenic groups, colistin- and carbapenem-resistant strains of E. coli. While each is effective in its own manner, these antibacterials also display limitations, i.e., the rapid appearance of mutations that confer resistance to the colicins while predatory bacteria do not completely kill their prey. Here, we show these limitations can be overcome using combined treatments of these antibacterials, with two pathogenic E. coli populations completely eradicated within 24 h. Given the diversity of colicins and the broad-spectrum activities of B. bacteriovorus strains, the results presented here suggests there is a massive potential to control pathogens when they are used together.


Assuntos
Bdellovibrio bacteriovorus , Colicinas , Escherichia coli , Colistina/farmacologia , Carbapenêmicos , Bactérias , Antibacterianos/farmacologia
9.
J Microbiol ; 61(2): 145-158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36753040

RESUMO

With the growing threat of antibiotic resistance, researchers around the globe are seeking alternatives to stem bacterial pathogenesis. One such alternative is bacteriocins, proteins produced by bacterial species to inhibit the growth and viability of related bacterial species. With their diverse mechanisms, which include pore formation and nuclease activities, and narrow spectrum of activities, which limit their impact to only certain bacterial species, unlike many chemical antibiotics, bacteriocins offer intriguing possibilities to selectively control individual bacterial populations. Within this review, therefore, we highlight current research exploring the application of colicins and microcins, a subset of bacteriocins, with an emphasis on their activities against drug-resistant pathogens, both in in vitro and in vivo settings.


Assuntos
Bacteriocinas , Colicinas , Humanos , Masculino , Colicinas/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Resistência a Medicamentos , Pai
10.
Environ Microbiol ; 25(5): 977-989, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604972

RESUMO

The colicin I receptor (CirA) is a well-studied outer membrane protein that has been reported to play important roles in antibiotic resistance, virulence, and iron homeostasis, although its exact physiological roles require further investigation. In this study, differentially expressed proteins between the ΔahcirA and wild-type (WT) strains of Aeromonas hydrophila were compared using quantitative proteomics. Bioinformatics analysis revealed that the expression of peptide, histidine, and arginine ATP-binding cassette (ABC) transporter system-related proteins was significantly higher in the ΔahcirA strain. Subsequent growth assays revealed that ΔahcirA grew slower than the WT strain in nutrient-limited medium when supplemented with dipeptide, histidine, and arginine as the carbon source. Far-western blot analysis further confirmed that AhCirA can directly bind to histidine/arginine and dipeptide small-molecule substrates in addition to their periplasmic-binding proteins, AhDppA and AhHisJ, respectively. These results indicate that AhCirA may play an important role in the uptake of amino acids and peptides as a channel-forming porin while also directly interacting with ABC transporters to transport nutrient substances into the plasma membrane. Overall, this study demonstrates that AhCirA is a multifunctional protein in A. hydrophila and extends our understanding of known nutrient transport mechanisms among bacteria.


Assuntos
Proteínas de Bactérias , Colicinas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colicinas/metabolismo , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Proteômica/métodos , Histidina/metabolismo , Nutrientes , Arginina/metabolismo
11.
Protein Sci ; 32(1): e4531, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477982

RESUMO

Detection of homologous relationships among proteins and understanding their mechanisms of diversification are major topics in the fields of protein science, bioinformatics, and phylogenetics. Recent developments in sequence/profile-based and structural similarity-based methods have greatly facilitated the unification and classification of many protein families into superfamilies or folds, yet many proteins remain unclassified in current protein databases. As one of the three earliest identified RNases in biology, ribonuclease T2, also known as RNase I in Escherichia coli, RNase Rh in fungi, or S-RNase in plant, is thought to be an ancient RNase family due to its widespread distribution and distinct structure. In this study, we present evidence that RNase T2 represents a circularly permutated version of the BECR (Barnase-EndoU-Colicin E5/D-RelE) fold RNases. This subtle relationship cannot be detected by traditional methods such as sequence/profile-based comparisons, structure-similarity searches, and circular permutation detections. However, we were able to identify the structural similarity using rational reconstruction of a theoretical RNase T2 ancestor via a reverse circular permutation process, followed by structural modeling using AlphaFold2, and structural comparisons. This relationship is further supported by the fact that RNase T2 and other typical BECR RNases, namely Colicin D, RNase A, and BrnT, share similar catalytic site configurations, all involving an analogous set of conserved residues on the α0 helix and the ß4 strand of the BECR fold. This study revealed a hidden root of RNase T2 in bacterial toxin systems and demonstrated that reconstruction and modeling of ancestral topology is an effective strategy to identify remote relationship between proteins.


Assuntos
Colicinas , Ribonuclease Pancreático , Ribonuclease Pancreático/química , Sequência de Aminoácidos , Ribonucleases/química , Escherichia coli/genética , Escherichia coli/metabolismo
12.
Microbiol Spectr ; 10(5): e0139622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190425

RESUMO

Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.


Assuntos
Anti-Infecciosos , Bacteriocinas , Colicinas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Masculino , Colicinas/genética , Colicinas/metabolismo , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Infecções por Escherichia coli/veterinária , Diarreia/veterinária , Bacteriocinas/genética , Exotoxinas
13.
Can J Microbiol ; 68(11): 687-702, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121064

RESUMO

The Escherichia coli ZP strain (ZP) was constructed based on the known probiotic E. coli strain Nissle 1917. It was genetically modified to carry the colicin E7 synthesis gene encoding DNase on a conjugative plasmid and the colicin E7 immunity gene in the chromosome. The aim of this study was to evaluate the effects of the daily ZP per oral administration (5 × 108 or 5 × 1010 CFU per bird) on the growth performance, hematological, biochemical, histological parameters, gut microbiota, and nonspecific immunity of the 4-24 days old broilers. The ZP administration increased the abundance of genera Bacillus, Butyrivibrio, and Clostridium and did not influence the weight gain of 4-16 days old broilers. The biochemical parameters were within normal ranges for poultry in experimental and control groups. The ZP administration had no effect on the erythrocyte numbers, hemoglobin and immunoglobulin Y concentrations, but significantly increased the serum lysozyme concentration, leukocyte numbers, and reactive oxygen species production by phagocytes compared with the control group. It did not cause inflammatory changes in intestinal mucosa, Peyer's patches, and spleen. Thus, the ZP had no detrimental effects on broiler health and could be an efficient probiotic for the broiler colibacillosis prophylaxis.


Assuntos
Colicinas , Infecções por Escherichia coli , Microbioma Gastrointestinal , Probióticos , Animais , Colicinas/farmacologia , Escherichia coli/genética , Galinhas , Infecções por Escherichia coli/prevenção & controle , Probióticos/farmacologia
14.
Front Immunol ; 13: 929740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059454

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is a well-known critical pathogenic zoonosis that causes extraintestinal infections in humans and animals by affecting their immune organs. Recently, research on the outer membrane protein of E. coli, tolerant colicin (TolC), a virulent protein in the formation of the ExPEC efflux pump, has been an attractive subject. However, the pathogenic mechanisms remain unclear. This study aimed to explore the role of TolC in the pathogenesis of the ExPEC strain PPECC42; a complementation strain (Cm-TolC) and an isogenic mutant (ΔTolC) were constructed. Loss of TolC drastically impaired the virulence of ExPEC in an experimental mouse model. ΔTolC showed a substantial decrease in the porcine aortic vascular endothelial cell (PAVEC) adherence, invasion, and pro-inflammatory response, in contrast to that of the wild type, with a reduced survival ratio in both the bacterial load and whole blood in mice. ΔTolC also showed decreased expression of necroptosis signals such as receptor-interacting protein kinase 1, phosphorylated mixed-lineage kinase domain-like protein, and mitochondrial proteins such as phosphoglycerate mutase family member 5. Our data suggest that TolC is closely associated with ExPEC pathogenesis. These results provide scientific grounds for exploring the potential of TolC as an effective drug target for controlling ExPEC infection, screening new inhibitors, and developing new drugs. This will allow for further prevention and control of ExPEC infection.


Assuntos
Colicinas , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Colicinas/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/metabolismo , Humanos , Camundongos , Suínos , Virulência
15.
Arch Microbiol ; 204(10): 628, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114880

RESUMO

Spontaneous production of E colicins is known to occur in only a small fraction of colicinogenic population. The current study aimed to determine if the same holds true for the production of colicin E9 in real time, by investigating the induction dynamics of the promoter of the ColE9 operon which results in the expression of the ColE9 activity and functional genes. A novel fluorescent reporter was constructed which carries the fusion of the ColE9 promoter and the gfpmut2 gene in a low copy number plasmid that was compatible with the native ColE9-J plasmid. Using the fluorescent reporter construct in the non colicinogenic E. coli cells, the induction of the ColE9 promoter was investigated. The current study demonstrates that the spontaneous induction of the ColE9 promoter occurs in a heterogenous manner and this heterogeneity is maintained in a bacterial population for several generations suggesting that it is unlikely due to any irreversible mutation in the bacterial culture. Furthermore, the same investigations were repeated using the colicin E9 producing E. coli cells. Flow cytometry analysis revealed that 7.1 ± 0.68% of the colicin E9 producing E. coli cells expressed GFP albeit only 2.45 ± 0.30% was observed from non colicinogenic E. coli cells. The considerable increase in the number of the fluorescent cells was likely due to the DNase activity of colicin E9 produced by their clonemates, resulting the auto-induction, which can be abolished with the inactivation of the DNase activity of the colicin E9.


Assuntos
Colicinas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Colicinas/genética , Colicinas/metabolismo , Desoxirribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Óperon
16.
Artigo em Inglês | MEDLINE | ID: mdl-36142096

RESUMO

Enterobacteriaceae are widely present in many environments related to humans, including the human body and the food that they consume, from both plant or animal origin. Hence, they are considered relevant members of the gastrointestinal tract microbiota. On the other hand, these bacteria are also recognized as putative pathogens, able to impair human health and, in food, they are considered indicators for the microbiological quality and hygiene status of a production process. Nevertheless, beneficial properties have also been associated with Enterobacteriaceae, such as the ability to synthesize peptides and proteins, which can have a role in the structure of microbial communities. Among these antimicrobial molecules, those with higher molecular mass are called colicins, while those with lower molecular mass are named microcins. In recent years, some studies show an emphasis on molecules that can help control the development of pathogens. However, not enough data are available on this subject, especially related to microcins. Hence, this review gathers and summarizes current knowledge on colicins and microcins, potential usage in the treatment of pathogen-associated diseases and cancer, as well as putative applications in food biotechnology.


Assuntos
Anti-Infecciosos , Colicinas , Animais , Bacteriocinas , Colicinas/química , Colicinas/metabolismo , Colicinas/farmacologia , Enterobacteriaceae , Humanos , Peptídeos
17.
Appl Microbiol Biotechnol ; 106(17): 5675-5686, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927333

RESUMO

Bacteria have developed various mechanisms by which they can compete or cooperate with other bacteria. This study showed that in the cocultures of wild-type Sphingomonas melonis TY and its isogenic mutant TYΔndpD grow with nicotine, the former can outcompete the latter. TYΔndpD undergoes growth arrest after four days when cocultured with wild-type TY, whereas the coculture has just entered a stationary phase and the substrate was nearly depleted, and the interaction between the two related strains was revealed by transcriptomic analysis. Analysis of the differential expression genes indicated that wild-type TY inhibited the growth of TYΔndpD mainly through toxin-antitoxin (TA) systems. The four upregulated antitoxin coding genes belong to type II TA systems in which the bactericidal effect of the cognate toxin was mainly through inhibition of translation or DNA replication, whereas wild-type TY with upregulated antitoxin genes can regenerate cognate immunity protein continuously and thus prevent the lethal action of toxin to itself. In addition, colicin-mediated antibacterial activity against closely related species may also be involved in the competition between wild-type TY and TYΔndpD under nutritional stress. Moreover, upregulation of carbon and nitrogen catabolism related-, stress response related-, DNA repair related-, and DNA replication-related genes in wild-type TY showed that it triggered a series of response mechanisms when facing dual stress of competition from isogenic mutant cells and nutritional limitation. Thus, we proposed that S. melonis TY employed the TA systems and colicin to compete with TYΔndpD under nutritional stress, thereby maximally acquiring and exploiting finite resources. KEY POINTS: • Cross-feeding between isogenic mutants and the wild-type strain. • Nutrition stress caused a shift from cooperation to competition. • TYΔndpD undergo growth arrest by exogenous and endogenous toxins.


Assuntos
Antitoxinas , Toxinas Bacterianas , Colicinas , Proteínas de Bactérias , Perfilação da Expressão Gênica , Sphingomonas
18.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742896

RESUMO

In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Colicinas , Proteínas de Escherichia coli/metabolismo , Colicinas/genética , Colicinas/farmacologia , Ecossistema , Escherichia coli/genética , Óperon , Plasmídeos/genética , RNA Ribossômico 16S
19.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648826

RESUMO

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Assuntos
Anti-Infecciosos , Colicinas , Proteína Receptora de AMP Cíclico , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monossacarídeos , Estresse Oxidativo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Anti-Infecciosos/farmacologia , Colicinas/metabolismo , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Methods Mol Biol ; 2466: 61-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585311

RESUMO

We have developed the CL7/Im7 protein purification system to achieve high-yield, high-purity and high-activity (HHH) products in one step. The system is based on the natural ultrahigh-affinity complex between the two small proteins encoded by colicinogenic plasmids carried by certain E. coli strains, the DNAse domain of colicin E7 (CE7; MW ~ 15 kDa) and its natural endogenous inhibitor, the immunity protein 7 (Im7; MW ~ 10 kDa). CL7 is an engineered variant of CE7, in which the toxic DNA-binding and catalytic activities have been eliminated while retaining the high affinity to Im7. CL7 is used as a protein tag, while Im7 is covalently attached to agarose beads. To make the CL7/Im7 technique easy to use, we have designed a set of the E. coli expression vectors for fusion of a target protein to the protease-cleavable CL7-tag either at the N- or the C-terminus, and also have the options of the dual (CL7/His8) tag. A subset of vectors is dedicated for cloning membrane and multisubunit proteins. The CL7/Im7 system has several notable advatantages over other available affinity purification techniques. First, high concentrations of the small Im7 protein are coupled to the beads resulting in the high column capacities (up to 60 mg/mL). Second, an exceptional stability of Im7 allows for multiple (100+) regeneration cycles with no loss of binding capacities. Third, the CL7-tag improves protein expression levels, solubility and, in some cases, assists folding of the target proteins. Fourth, the on-column proteolytic elution produces purified proteins with few or no extra amino acid residues. Finally, the CL7/Im7 affinity is largely insensitive to high salt concentrations. For many target proteins, loading the bacterial lysates on the Im7 column in high salt is a key to high purity. Altogether, these properties of the CL7/Im7 system allow for a one-step HHH purification of most challenging, biologically and clinically significant proteins.


Assuntos
Colicinas , Proteínas de Escherichia coli , Cromatografia de Afinidade/métodos , Colicinas/química , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...